
Patterns of Creativity and Composition in
Software Development, Music, and Film

George Kelly Flanagin
Bright-Crayon, LLC

PO Box 70966
Richmond, VA, 23255 USA

+1 804 307 2729

george@bright-crayon.com

Arturo Holloway
Bright-Crayon, LLC

PO Box 70966
Richmond, VA, 23255 USA

+1 804 307 2729

arturo@bright-crayon.com

ABSTRACT
This paper explores the relationship between activities
typically considered creative, and the role of creativity in
software development. By treating software as a
composition, and considering that software developers
may be composers, we revisit the age-old debate between
art and science with a new focus.

The recommendation of the paper is that creativity is a
social phenomenon not practiced in isolation. For
software developers to be maximally successful, we must
let people work cross functionally rather than confine
them to silos.

Categories and Subject Descriptors
[Software Process and Workflow]: Human activities
and processes as they relate to software development.

General Terms
Management, Design, Human Factors, Theory.

Keywords
Creativity, Composition, Music, Film, Art, Science.

1. Introduction
Whatever the production of software “is,” we are quite
certain it has not been around for very long, at least in
comparison to the construction of aqueducts or the
playing of the lute. Over the last three decades we have
seen a not so subtle struggle to classify it as either an art
or an engineering discipline, and there has been no clear
winner.

Consider the titles of two early works in the field: The Art
of Computer Programming, by Donald Knuth, and The
Mythical Man Month, Essays in Software Engineering,
by Fred Brooks, Jr. The titles are even more curious once
one begins to inspect the contents of each book. The
former, with the word “art” in its title, looks like a book

written both by and for readers with a doctorate in
mathematics. The latter book, with the word
“engineering” in its title, is conversational in tone,
pleasantly slim, and can easily be read by readers who
never plan to write a single line of code.

The management ranks of software development usually
share the tendency to classify “programming” with the
engineering disciplines. In 1992 a senior Hewlett
Packard manager told the author that “calling it ‘art’ was
the worst thing that could have happened to software. I
wish my employees had never seen that title,” he said,
referring to Knuth’s book. Whatever software studies are
called in a university, they are invariably allocated space
in the engineering or math buildings, and students are
usually required to have a substantial amount of their
undergraduate work allocated to the same electives that
support degrees in mechanical or electrical engineering.

On the art side, we find post-university practitioners of
software studies are attracted to words like “guru,” and
“poo-bah,” terms that carry, on the one hand, a religious
significance and on the other, a reference to The
Flintstones or Gilbert and Sullivan’s Mikado. Self-
described “architects” and “senior web designers” also
abound.

How shall we usefully reconcile these disparate points of
view?

It is the thesis of this essay that this distinction is
irrelevant and it is imperative that we refrain from
indulging in the politics of defining what programmers do
as either art or science and focus on the "compositional"
and "creative" aspects inherent to the process if we are to
truly understand the nature of software development and
improve the curriculum of software studies.

 In fact, art and science are much the same.

2. What is composition?
2.1 A working definition of composition
For the purposes of this essay, we will be using the terms
“programming,” “software design,” “software
architectural practices,” and “systems analysis” with a
degree of substitution that may make some readers
uncomfortable. There is no harm intended; in fact, it is
our additional thesis that these apparently distinct
activities constitute something of a gestalt, and that the
hope of the entire software discipline rests on our ability
as an “industry” to un-stovepipe, de-silo, and generally
unify software practice.

It is worth asking, before thinking through this problem,
whether or not we have working definitions of
“composition” and “compositional activity?” Definitions
are always tricky. For the purposes of this essay at least,
let us consider a compositional activity to be one in which
the interrelation of the parts is more essential than the
“material” from which any individual part is made.

A real world example would help!

It is said the essence of a bicycle is in its wheels. In terms
of strength to weight ratios, and the sheer difference in
mass between the wheel and its load, there is little to
compare with the spoked bicycle wheel. A cyclist moving
along at race speeds is being supported by little more than
24 to 36 wires in each wheel, each only the diameter of
one of the strands in an electrical cord.

The best cyclists prefer to have “hand built” wheels,
meaning someone begins with a box of spokes, a hub, and
a rim, and strings everything together. Hand built wheels
made by someone who is skilled are generally three times
as strong as wheels built by robot, even when the
materials are identical. Building bicycle wheels is a
compositional activity with the wheel being the finished
composition. The utility and aesthetic success of the
wheel depends not so much on improvements to the
materials -- the spokes, hubs, and rims -- as it does on the
skill with which these materials are combined.

2.2 Composition of Music.
Most of us are more comfortable using the word
“composition” in its connection with music. Considering
this to be the case, it makes sense to consider whether
there might be a direct and useful analogy between the
writing of works of music and the creation of software
systems. If true, this would be especially fortunate,
considering we can draw on at least four centuries of
experience with the former as opposed to a mere four
decades with the latter.

It is our contention that there is great value in the
comparison of music and software and that in doing so

we will gain a completely new appreciation for the
struggles of software engineering practitioners.

2.2.1 Three people we can’t study so easily:
Beethoven, Mozart and Schubert.
The fifth symphony of Beethoven is perhaps the best
known musical work in the Western world. It is studied in
every music appreciation class from elementary school to
Classical Music for Dummies. Of it, Leonard Bernstein
said its magical appeal lies in the finished work “seeming
to pour from Beethoven in a single breath.” It bears no
trace of the heroic struggle to create it; a struggle that
took eight years.

Our desire to discover any existing analogy is
complicated by a tendency for the effort invested in
finished compositions to be invisible to the casual
observer. In both music and software, we spend much of
our time polishing the chrome on the final product for
aesthetic satisfaction and because of practical
considerations. Software goes through an architectural
review, and much debugging. The failure to “adequately
document” software systems for maintenance and
enhancements is no different in its origin than the failure
of Beethoven to provide us with ten alternative
manuscripts showing his cross outs, erasures, mistakes,
blood, sweat, and tears, and other rework.

Many other composers were no better at leaving us a trail
of crumbs to understand the compositional process.
Mozart appears to have gotten great many things worked
out in his head, before jotting them down quickly in
comparison to whatever time his musical ideas may have
spent in the privacy of his mind. [1]

In his mere thirty-one years, Franz Schubert left behind a
pile of unfinished and abandoned manuscripts that equals
the completed output of many composers: six unfinished
symphonies, several tens of partially completed songs,
four operas (none of which are really completed) and
many pages of abandoned piano music. Yet very few of
these offer any insight into his compositional processes.
The implausibility of his writing many revisions is
accentuated by the fact that in 1815 alone he wrote nearly
150 completed songs for voice and piano - about one
every two days.

2.2.2 Three alternatives: Bruckner, Liszt, and
Dvořák.
Considering the forces of erosion have removed many of
the insights we might get from three of the best known
composers of the classical age, we must ask from whom
in the pantheon of great composers may we get some
enlightenment? We offer three examples to consider, each
from approximately the same period in time and the same
part of the world, yet each giving us a unique insight on

the compositional process as it relates to software design
and development:

• Anton Bruckner, 1824-1896, Austrian
symphonist and choir master.

• Franz Liszt, 1811-1886, Hungarian pianist,
composer and arranger.

• Antonín Dvořák, 1841-1904, Czech symphonist,
teacher, and a writer of music for smaller forces.

2.2.2.1 Anton Bruckner
Without giving more biography than allowed by the
limitations of space or audience interest, let us say that
Bruckner is mainly known for his nine numbered
symphonies, and the two unpublished symphonies written
earlier in career, oddly referred to as “Number 0,” and
“Number 00.” From our perspective of studying software
processes, Bruckner is most interesting because he had a
case of “revision-itis” that would make any programmer
feel at home.

Let us consider his third (or was it really his fifth?)
symphony as a representative example to make our case.
It first popped onto the musical firmament in 1873 as a
little over an hour of loud and sometimes longwinded
horn blowing that made plenty of references to its
dedicatee, Richard Wagner. On the last page of the score
Bruckner wrote that the work was “completely finished,
the night of 31st December 1873.” This was to be far from
the case. [2]

The Vienna Philharmonic Orchestra (translation: “the
users”) rejected the work as unplayable the next month.
While Mr. Bruckner started “Version 2.0” of this
symphony right away in the spring of 1874, he was
distracted by other work, and resubmitted a substantially
revised work to the same orchestra in 1877. As we would
say in the twenty-first century, it bombed at the box
office.

Bruckner was very sensitive about criticism of his music,
as are many programmers about the quality of their code.
It is the consensus of most present day critics and scholars
that he revised his works so much that the “final”
versions of his various symphonies sound overly much
alike. Gustav Mahler begged him to stop with the
revisions to the third symphony once Mahler saw the
printed score in 1878. [3] Indeed, by the time Bruckner
finished or gave up on them, all his symphonies may be
said to have been written around the end of his life.

How often do we hear of programmers who work on the
same snippet of code for far too long?

Bruckner may have been the first composer to need
version control software. Even the year 1877 was not to
be the end of the assembly line for Bruckner’s third

symphony. In 1889 another version (3.0?) was published,
now at least ten minutes shorter than the original, and
with some portions so drastically altered that they seem
completely new rather than derivative. [4] Not too many
years ago, musicologists digging through the rubble of
Bruckner’s manuscripts even discovered another
unpublished version of the second movement of the
symphony. [5]

Only Bruckner’s death stopped the process of revision,
which, for him, was very nearly the same process as
composition. His manuscripts are filled with evidence of
his struggles in much the same way that programmers
sometimes “comment out” lines of code. In both the case
of Bruckner’s music and software systems, the forensic
task of those who have followed is complicated by never
being sure exactly what is meant, nor why the changes
were made.

In Bruckner, we see the pattern of creativity as well as the
potential for its obstruction through revision.

2.2.2.2 Franz Liszt
Liszt’s music, like that of Rimsky-Korsakov, could have
been said to fall into two categories: the over played, and
the unknown. [6] Franz Liszt’s motivations for revising
his works were most certainly not inspired by any
sensitivity to criticism: Liszt’s ego and his skill as a
performer appear to have known little bound. Along with
violinist Nicolò Paganini, Liszt more or less invented the
solo concerts / touring performances that can trace a
direct path to modern day Phish concerts. It is certainly
possible that Liszt may have been responding to an
internal critic as the source of his revisions to his music,
but if that were the case, the cat was never let out the bag.

Liszt’s thought process about many of his revisions
appears to have been closer to what we now think of as
“usability concerns.” It is important to remember that
Liszt had enormous hands, and particularly during his
youth, incredible technique. During his middle age he
frequently reworked early pieces, which only the younger
Liszt could have played, into something more suitable for
mere mortals. [7] As Harlan Mills of IBM said about
programming, if debugging is harder than writing the
code in the first place, and if you are as clever as you can
be when you write the code, how can you ever hope to
debug it?

Second, during the nineteenth century, the piano was
evolving rapidly, and Liszt felt a need to change his piano
music in two counterintuitive ways: The range and
dynamics of the piano were getting greater because of
advances in construction techniques (i.e., the hardware
was getting better). But, there was a removal of features
left over from the days of the harpsichord. [8] We can
think of this latter problem being akin to the

disappearance of little tricks and optimizations we used to
encounter in code.

Third, Liszt responded to his own compositional motor,
and its interaction with the many people around Europe
who played his music. We may recognize Liszt as
unusually responsive to requests for enhancements and
new features. As new musical ideas occurred to Liszt, he
incorporated them into already existing compositions,
wrote them out, and sent them off to publishers.

In other words, Liszt was simply meeting his customers’
requests.

2.2.2.3 Antonín Dvořák
Let us consider only briefly our final candidate for
comparison of the software and music compositional
processes. Dvořák was, by today's standards, what we
might consider a “free spirit.” Although he studied music
quite seriously and formally, he felt little pressure to
conform. Dvořák was also not a very good record keeper.
His personal catalogue of his many compositions is
missing numbers in the numbering scheme, and worse
still for forensic musicologists, contains duplicated
numbers.

Throughout his fairly happy life, Dvořák wrote string
quartets: compositions for two violins, a viola, and a
cello. It is interesting to note that the one we know as his
seventh effort is the first to have been published. [9]
Frequently, we view historical figures as always having
been successful, and in the case of music, we believe
every note from their pens was immediately added to the
list of performed works. Not so.

Rather than enter the vicious cycle of revisions pioneered
by Bruckner, Dvořák decided to try a new attempt at
meeting market needs when the publishers rejected his
early products. His first attempt at quartet writing dates
from 1862, and was modeled somewhat on the quartets of
Schubert forty years before. The next three form a kind of
set, and are attempts to be “modern,” which at the time
meant “music like Wagner and Liszt.” Publication was
not to be for these early works.

Undaunted by failure, he began on another pair which has
a bit of the flavor we have come to associate with
Dvořák: folk melodies. The one we know as the sixth
quartet was abandoned before it was quite finished, and
Dvořák began the seventh quartet in 1876, fourteen years
of persistence after the first attempt.

From the point of view of learning something about
composition in software development, it is important to
see Dvořák had multiple teachers and models. He learned
from each, and assumed his difficulties in getting
published were not due to any inherent problem with his
ability.

 Fortunately, Dvořák was even less concerned about
covering his tracks or appearing to have “done it right”
from the start. His early quartets survive and can be
studied as examples of how he learned to compose.
Brahms, on the other hand, said that he burned his first
twenty attempts.

3. Composition in Software Development.
Most of the published work on software practices tends to
be of the “how to” variety. “How to” books sell well but
it frequently appears that the most that can be said about
software development is that it can be learned in twenty-
one days from a single large book, or that the
dunderhead’s guide to a particular programming language
will really tell the reader how to use it to build
commercially viable products. Existing software systems
do not support all the claims made for the “how to” model
but before we can improve it we need to address the
question: Where should we start?

3.1 Brooks’s advice for improving software
development.
Brooks offers in his essay “No Silver Bullet,” now
reprinted in the silver anniversary edition of The Mythical
Man Month, that there are a few steps one can take to
accelerate the progress of “great designers,” ones that he
says are “an order of magnitude more productive than the
acceptable norm.” His insights are powerful and
controversial, and it is worth it to see how they stack up
against a description of software development as a
compositional practice.

Brooks’s advice has proven to be rather controversial
over the years – this particular bit of it first appeared in
1986 – and it is worth it to ask ourselves, “Why is it
controversial?” One starting point is to see if Brooks’s
advice is consistent with what we have proposed about
the theory of composition as a metaphor for software
system design and implementation.

Somewhat abridged for brevity, Brooks’s prescriptions
are these: [10]

3.1.1 Identify the best people early, regardless of
their experience.
Item one is certainly consistent with what we know about
the production of great art, or at least great music. There
are not too many teenagers who have written novels
because telling such a story requires the types of life
experiences that cannot be accelerated. However, plenty
of teenagers have proven to have a great ability with
things that are less mediated by life events: music, math,
even poetry, and definitely software.

However, the modern hiring and management practices
do not generally spend much time identifying top
performers early in their careers. There are several

reasons for this lack of attention, and most of the reasons
cut both ways: average tenure of employment in the
software field is rather short; many companies do not
believe they are interested in the top rung of performance,
and do not see it as their jobs to create an environment in
which peaceful working conditions can be maintained
between the rank and file and a non-management elite.

3.1.2 Apprentice them to the best people you have.
Item two has, for at least a couple of thousand years, been
the way real knowledge and craft were transferred from
master to student. It is not, however, the way things are
done in most employers’ workplaces. One must keep in
mind the silver bullet being sought by employers is not
one that would magnify the differences between software
developers. Not only are there political arguments about
whether one must treat all employees equally, but there
are economic arguments for generic training for the
masses at reduced cost per person.

3.1.3 Let them try their hands at a number of
elements of the software development world.
Suggestion number three is in serious jeopardy at even
medium size employers, as more companies move toward
rigidly defined job descriptions that attempt to make
specialists from recent college graduates as soon as the
hiring process is concluded. However, suggestion three is
alive and well at smaller places of business out of
necessity; in fact, the need and desire to cross between
different niches of software development is often what
defines the de facto “small company” mentality.

A senior project manager at a large company related the
following story:

“I was assigned a small project that really needed
doing; which is why they gave it to me. The
person requesting my services told me that he had
also assigned an analyst to the task for 40 hours.
Thinking of the need to begin work as soon as
possible, I said, ‘Look, if it is only 40 hours, I can
just do the analysis myself.’ I was told that doing
the analysis wouldn’t be a good use of my time
although I have actually published an article on the
critical subject matter of the project.”

In the case of this organization, the need to maintain the
division of labor clearly exceeded the need to have the
best person work on it.

When we look back to our examples in music, we find the
very best composers wrote music for a variety of
instruments and voices, even when they had a clearly
defined “favorite axe.” In fact, what can be said to make
Beethoven, Mozart, Schubert, and J.S. Bach more popular
than many other composers is that they were proficient in
a variety of musical settings. It is thus easier for the

casual listener to find a piece by one of them in an idiom
that listener is comfortable with.

Does this boundary crossing exist in software
development? Not often. An astute listener can pick up a
clue from the vocabulary: Particularly during the last
couple of years, the word “resource” has become a
euphemism for “person,” as if to imply that anyone could
be assigned the task. Not too long ago resources and staff
were separate items. Combining the advice to allow
promising newcomers broad exposure along with the
suggestion that these promising newcomers be identified
is asking for a social revolution that most managers do
not want to address.

3.1.4 Provide opportunities for the best people to
work together.
The core of the social revolution is contained in
suggestion number four: let the brightest and best people
work together. The self-selection phenomenon of
intelligence is thoroughly documented in the book The
Bell Curve, by Herrnstein and Murray [11]. The Bell
Curve is a subject of considerable controversy, and even
accusations of racism, but the ability of intelligent people
to find each other is without serious doubt. For example,
a few years ago the following snippet was overheard at a
café on University Drive in Palo Alto, California: “The
good people go to Stanford, get their BSCS, and find jobs
as top engineers at Hewlett-Packard. The really good
people go to Stanford, drop out after a couple of years,
and start a company.”

There are certainly top designers at many large
companies, not all of which are companies directly
involved with the production of software as their core
business. Many extraordinary people choose these
companies for the same reasons as their less talented
counterparts: steady income, social environment, location,
and access to medical benefits (for companies in the
United States). For these people, industry conferences
provide a frequent source of the type of intellectual
interaction Brooks tells us sharpens one’s creativity.

Very little great work is done in settings like the isolation
of Walden Pond, or in “work at home” situations. In fact,
Schubert set Goethe’s poems to music; Mendelssohn
revived interest in Bach’s music, and ate dinner regularly
with Robert Schumann, and Wagner married one of Franz
Liszt’s illegitimate daughters.

It is sad many people go through their lives believing the
great composers lived and still live in some kind of
vacuum apart from other artists. Good people will get
together; the question for management is what its role
will be in providing the environment and atmosphere to
facilitate this endeavor.

3.2 Is a software system a composition?
There are two questions left to consider in this essay. The
first is: If we accept that software development is a
compositional process, filled with revisions, struggle and
brilliant insight followed by explosively rapid work, do
the resultant software systems fit our criterion for being a
“composition?”

We think the answer is “yes.” First, consider that the
degree to which software systems please the users is not
tightly bound to the materials used to construct them.
Seldom has any customer or commissioner come forward
with a request that says “I want a software system that is
object oriented,” or “I want a software system that is built
with Enterprise Java Beans.” Instead, they tend to make
requests to have software systems built that solve some
particular problem: “I want a system that will track my
packages,” or “I want a system that prints many address
labels on a single sheet of paper.”

Second, consider the fact that the current quest for formal
processes and methods has continued along its own line,
regardless of changes in the underlying technology.
Managers, theoreticians, and tool smiths are still engaged
in the same quest that they began some years ago.

The numerous failures of the current fantasy of achieving
good results by combining (1) a generic project manager
and (2) a little drive-by architecture with (3) a cookie
cutter methodology, is not too far from a tacit admission
that the software system is a composition. Unfortunately,
our industry is not exploring the compositional process,
nor are we working on improving any methods by which
it is transferred from one practitioner to another.

Which brings up the final question: What do we know
about the way software developers actually work? There
are still very few books on this subject, although there are
more books than can be read prescribing how software
developers ought to work! One book that is rather old but
still useful is Susan Lammers’s book Programmers at
Work. [12]

Although it is not essential to cite every single reference
in Lammers’s book, we notice a few patterns in the
responses of the industry leaders she interviewed. For
example, most of the people interviewed report that a
picture is indeed worth a thousand words, at least in the
sense that the use of pictures is an approach to solving
problems from a high level of abstraction.

All of the people interviewed tend to view the
programming languages, operating systems, and hardware
as a medium in which they seek to express themselves.
Even though they see the medium as subject to change
and "improvement", this fact doesn't really change their
opinion of what they do or how they will succeed.

All who speak on the subject side with Brooks in
reporting that conceptual integrity is a key part of the
system's success, and we see that this is already known to
be a fact in the composition of music. None of the people
Lammers interviewed seem particularly repulsed by the
idea of coding, testing, or scheduling – activities that we
currently find in silos of isolation. And in music, we see
that composers generally see themselves as responsible
for their work from conception to the published work.
Finally, composers and software developers all feel that
communication and interaction are the keys to the
creation of satisfying products.

3.3 Creativity
It has been said that a software developer can be
identified as a person who repeats an experiment while
expecting a different result. An old adage of software
testing says, “If it only happened once, it didn’t happen,”
a kind of cruel compliment and complement to the first
barb. Through our occasional insistence to look at
software development as an activity to be either
engineered, or abandoned as inscrutable art, our industry
is repeating the same experiments in learning.

We claim the software process and the resulting software
are not much affected by the programming languages or
the formal methods. If this statement is true, it is
important to entertain the idea that the failure of
languages or methods to make tremendous leaps is
because they are merely inappropriately suited to the
problem we happen to be solving at the time.

In other words, they are not evil – just misguided.

3.3.1 Reliance on creativity in industries other than
software.
Plenty of businesses rely on creativity, but still make
deadlines. Engineers are constantly coming up with
creative solutions that either fix problems or provide us
with new products. Advertising agencies prosper by
providing creative content on tight schedules enforced by
publication deadlines. Most of the jobs in music are on
the commercial side, where jingles must be exactly 28
seconds long, or the music for a movie must exactly fit
the film that has already been shot.

In fact, let us consider two relevant and relatively recent
examples from the film industry, Jurassic Park and The
Matrix.

The film industry is a good one to consider because we
can view the role of the director as involving a good bit of
composition, and also because the director’s role is
generally viewed as central. In addition, the activities of
software development and filmmaking are further
intertwined by the film industry's tremendous reliance

upon the capability of software systems to generate and
edit the images we see.

3.3.2 Creativity in Jurassic Park
In the short film The Making of Jurassic Park, [13] there
is an excellent discussion of the creative challenges
shared by the traditional animators and the early
proponents of computer generated graphics. Stephen
Spielberg started out to film his movie using the
traditionally constructed physical models; toy dinosaurs,
if you will. When Spielberg saw the capabilities of the
computer models, he decided to change technologies,
leaving the traditional animators with the problem of
adapting to a completely new technology. Remember in
this analogy that “animation” is the real skill, one that is
more central than the techniques used to realize it.

The animators report on several directions chosen to cope
with the new technology. In one sequence, we see the
animation staff filming themselves running around the
parking lot while holding their arms out front like the
dinosaurs they wanted to model. Shortly after we see one
of the animators running a computer simulation in
reverse, telling the viewers that he could see several
problems with the dinosaur’s gate when he watched it
backwards.

For human factors engineers, the most interesting moment
may be the point where one of the animators shows a
“dinosaur input device.” The animators were not familiar
with the console interface to the software, and asked the
computer graphics staff to create a small abstract model
of a dinosaur. By manipulating the model in a manner
with which they were accustomed, the animators were
sending information to the software about how to move
the cyber-saurs.

Creativity need not adversely impact productivity; it just
might spark it.

Let’s take a quick look at the success factors. (1) The
technical staff and the users were willing to experiment
and be creative, even in a situation where the success of
the movie was at stake. (2) The animators sought
compositional advice about dinosaur steps through an
examination of their own walking, something they could
readily observe. (3) The compositional aspects of the film
itself were furthered by the newly discovered “ease” of
working with a novel user input device that was actually a
“throwback” to the older way of doing things.

3.3.3 Creativity in The Matrix
Since the introduction of the DVD, we have learned a
great deal about the making of many films. The DVD of
the 1999 movie, The Matrix, also includes a short film
about its making. [14] The Matrix, like Jurassic Park won
several awards for its innovations in technology, and they

are covered not only in short film on the DVD, but also in
detail by the directors on an alternate audio track that lasts
the length of the movie.

In perhaps the most interesting example of the
compositional process at work, The Matrix, a movie using
“technology” to make real actors appear to be comic book
characters, used technology similar to that used by
Jurassic Park (a movie preceding The Matrix by six
years) to make characterizations of non-existent creatures
appear to be real.

For example, there was a desire to show “bullet time,” a
device to, among other things, allow various characters to
appear to leap into the air and remain briefly suspended
while the rest of the universe proceeds at the usual pace.
In the accompanying short film we learn how ordinary
cameras were arranged in a semicircle to take one frame
each. These hundred or so images were later added to the
film to stretch the passage of time, allowing Carrie-Anne
Moss to float like a butterfly and sting like a bee, if only
for a second or two.

Again we see the nature of composition manifested in the
directors being more concerned about the aesthetic affects
on the viewer than the technology used to create it. Again
we see creativity functioning in a controlled environment
of budget and schedule. Again we see something working
in full, appearing to be a seamless whole when actually it
is assembled from countless parts.

Can composition and creativity be taught and learned?
The answer is certainly “yes.”

4. Conclusion
We must look away from the debate pitting art against
science. We must place our focus on the compositional
and creative aspects of building software systems. We
must derive examples suitable for how we teach abstract
mirroring of problems and solutions from the real world.
By doing these things we will get much farther than if we
continue to look only for improvements in materials.

Any depth of knowledge in the use of a technology will
sooner or later become obsolete, no matter how popular
the technology may be today. In fact, the accelerated rate
of change in the media that support software makes it all
the more important that we do this.

In the past, and in other professions, the media might well
have a lifetime that exceeded the lifetime of any
individual craftsman. Currently we have a situation in
which one can just barely become an expert with a
language as complex as C++ before it is replaced with
something else, like Java. We can no longer rely on the
constancy of our technologies.

By creating silos in the workplace, we have abandoned
the learning of integration and composition. It is rare to
find anyone who has the “big picture.” This strategy of
divide and be conquered is contributing to the cost
overruns and lowered quality that we have today. Careful
mentoring in the compositional and creative processes,
combined with an acceptance of the transitory nature of
languages, operating systems, and hardware, will create
more adept software composers. These composers will
then provide better, more satisfying software systems.

5. REFERENCES

[1] In a letter Mozart relates “I do not hear in my
imagination the parts successively, but I hear them,
as it were, all at once. … For this reason the
committing to paper is done quickly enough, for
everything is, as I said before, already finished; it
rarely differs on paper from what it was in my
imagination.” From The Letters of Mozart, edited by
Hans Mersmann, Dover Publications, 1972, p. vii.

[2] Eliahu Inbal, liner notes to Bruckner Symphony No.
3, Teldec 8.42922.

[3] John Warrack, liner notes to Bruckner Symphony
No. 3, Deutsche Grammophon 431 684-2.

[4] Richard Osborne, liner notes to Bruckner Symphony
No. 3, Deutsche Grammophon 413 362-2.

[5] Georg Tintner, liner notes to Bruckner Symphony
No. 1, Naxos 8.554430.

[6] Richard Taruskin, “The First Russian Symphonist?”,
included in the liner notes to “Rimsky-Korsakov, 3
Symphonies,” Deutsche Grammophon, 423 604-2,
1988.

[7] Leslie Howard, “The Schubert Transcriptions, Vol.
III, The Complete Music for Solo Piano, Volume
33,” Hyperion CDA 66957/9, 1994.

[8] Leslie Howard, “Douze Grandes Études, The
Complete Music for Solo Piano, Volume 34,”
Hyperion, CDA 66973, 1994.

[9] Prof. Dr. Jarmil Burghauser, “Dvořák and the String
Quartet,” Deutsche Grammophon, 1977.

[10] Frederick P. Brooks, Jr., The Mythical Man Month,
Addison-Wesley, 1995. p 202.

[11] Richard Herrnstein and Charles Murray, The Bell
Curve; Intelligence and Class Structure in American
Life, Simon and Schuster, 1994.

[12] Susan Lammers, Programmers at Work, Microsoft
Press, 1986.

[13] Jurassic Park, Collector’s Edition, Universal Pictures,
DVD, 2000.

[14] The Matrix, Warner Brothers, DVD, 1999.

